
-Al? " I2 THE INLIU f OF SNALL DEFECTS ON TM ILE SPC IEN
DUCTILITY AND SYNNETRY OF DEFORNATION(U) NAVAL RESEARCH
LAD uASHINGTON DC P MATIC ET AL 64 SEP 87 NRL-MR-5927

I UNCASSIFIED 
F/C 2W& Li



I. I

III 1 .1 .:

': 2 5l h'll illL

'4

0o

-- '

iP

U..

- 'h U i. ', *; 4*. U * *. . . ~ 4 I - ' - *

-] ,.. '. .. ,** W. .d

9'9 e-v* 9

- -: . U

:'_.. 
." .- : . ., . . *** .. '.. .- . . . . . .-. ..... 

_ * . . 4'.. . *_  * . * , ,. 'r ._ , .. ' *-

L . " ,4 . , " , " . . .r . " 

,, .J l " . o " . " " .- ." ." q - ." ." " - " " ," .- " " " 
d " , " ,, t _ , -_ 

w q ,J . . ,4 _ w - , -- , t . r "-h'i 
-9 'e 

",C



Naval Research Laboratory
Washington, DC 20375-5000

00 NRL Memorandum Report 5937

N00

The Influence of Small Defects on
QTensile Specimen Ductility and

Symmetry of Deformation

PETER MATIC AND MITCHELL I. JOLLES

Mechanics of Materials Branch
Material Science and Technology Division

September 4, 1987

DTIO
(7 ,LECTE D

\NOV 1 71987.

Approved for public release; distribution unlimited.

-. ,,_ . ..-



0U------5dVN

SECURITY CLASSIFICATION OF THIS PAG

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION b. RESTRICTIVE MARKINGS

UNCLASSIFIED________________________

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

2b. DECLASSIFICATION I OWNGRADING SCHEDULE Approved for public release; distribution un-1

limited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MIONITORING ORGANIZATION REPORT NUMBER(S)

NRL Memorandum Report 5937

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

Naval Research Laboratory Code 6382 _______________________

6c. ADDRESS (City, State. and ZIP Cod.) 7b. ADDRESS (City, State and ZIP Code)

Washington, DC 20375-5000

Ba. NAME OF FUNDING iSPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NyUMBER
ORGANIZATION (if applicable)

Office of Naval Research
3c. ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM IPROJECT ITASK WORK JNIT
Arlington, VA 22217 ELEMENT NO. NO. RR022- NO ACCESSION NO

__________________________________ 61153N22 I 01-48 IDN480-509
11 TITLE (include Security Cfassfication)

The Influence of Small Defects on Tensile Specimen Ductility and Symmetry of Deformation

12. PERSONAL AUTHOR(S)
Matic, Peter and Jolles, Mitchell I.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COLNT
FROM ___ TO ____ 1987 September 4 38

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Weld metal Tensile necking

Void defect Energy density
Tensile specimen Fracture toughness

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

'The quantitative translation of physical weld quality into structural integrity prediction depends on accu-
4 ratd characterization of weld material behavior in the presence of fabrication defects. The presence of such

defects will, however, significantly influence the response of common material test specimens. If the influence
of such defects is fully understood. test specimen data may be interpreted in a more meaningful way.

The role of a physically relevant geometric imperfection. in the form of a ipherical void defect. on
cylindrical tensile specimen response is computationally simulated for HY-100 weld metal. Defect radius and
location along the specimen axis are treated as independent parameters. Asymmetry of specimen deformation

* (in terms of specimen neck location) and specimen ductility (in terms of the reduction of area at1 aldlure I are
-' computationally predicted.

I(Continues)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION
M UNCLASSIFIE D/UNLI MITE D C3 SAME AS RPT [CTIC USERS I UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22bP TELEPH4ONE (include Area Code) 22c OFFCE SYMBOL
Peter Matic (202) 767-5215 1 o"de '"182

DO FORM 1473,34 MAR 83 APR edition maybe used untilexhausted SECURITY CLASSIFICArION O 'HIiS P46E
All other editions .are oosolete

-1' .M . .



SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT (Continued)

Results suggest that the neck location does not necessarily coincide with the defect location. Therefore,
' geometric defects are a sufficient condition for asymmetry of neck location but not a necessary condition for

neck formation In addition, coincidence of the defect and the neck reduces the specimen ductility at failure to
a lower bound value which depends on defect size When the defect and neck are separated, the defect free
specimen ductility at failure is recovered as an upper bound. The transition between these two ductility values
is abrupt, despite the continuum nature of the physical problem. Preliminary implications of these results on
the assessment of defect criticality are discussed.

.1',*

SECURITY CLASSIFICATION OF THIS PAGE

%,"



CONTENTS

INTRODUCTION ........................................................................ ........................ I

MATERIAL CHARACTERIZATION ............................................................ 2

-CONTINUUM MATERIAL TOUGHNESS CONCEPTS.................................................... 4

COMPUTATIONAL SIMULATION ............................................. I............................. 8

- ~ DISCUSSION OF RESULTS ................................................................................... 14

SUMMARY ............................................................................. I...... 27

REFERENCES ................................................................................................. 27

APPENDIX -ABAQUS Finite Element Program Formulation .......................................... 29

; nFor

"FA&I

7A33

El~p

AWIPtitYCodes %Sfr. r
-A,.'adl and/or

Dist special

01

1V

% V 0 A



94.

THE INFLUENCE OF SMALL DEFECTS ON
TENSILE SPECIMEN DUCTILITY AND

SYMMETRY OF DEFORMATION

INTRODUCTION

The quantitative translation of physical weld quality into a form useful for structural integrity

prediction of weld systems is a major problem for structural designers and analysts (e.g. Wells (1983)).

The wide variety in type and scale of detectable weld defects compounds the problem. Porosity, lack of

penetration, lack of fusion and slag inclusion all can be detrimental to weld performance as reviewed by

Lundin (1984). Improved characterization of deposited weld material is prerequisite for improved

structural integrity prediction of weld systems. As is inevitably the case with all inhomogeneous

, material systems, whether they are weld systems, fiber reinforced composites, steel reinforced concrete

or metal matrix composites, accurate prediction depends on an understanding of the effects the inho-

mogeneity bring to the global structural response.

Weld metal defects are generally distributed throughout the weld zone. Non-destructive inspec-

tion techniques are used to detect and evaluate defects. Welds which contain defects outside acceptable

size and shape limits are rejected. Defects below these limits are accepted. Examples of criteria pro-

posed to define allowable limits include work by Harrison (1972a), Harrison (1972b), Boulton (1977)

and Lundin (1984). One common aspect of this problem is to undestand how small defects influence

-'. the deformation and fracture of simple specimen geometries. This investigation considers spherical

* void defects in simple cylinderical tensile specimen geometries for HY-100 weld metal. Defect size and

location are considered independent parameters for the purpose of computational simulation. Of partic-

ular interest are the sensitivity of predicted specimen deformation asymmetry and specimen ductility to

defect size and location. These limits are generally obtained through tests of small scale sample welds or

selected component geometries. As a result, the limits on the defects are size and geometry dependent

and in strict terms serve only as qualitative guidelines for integrity assessment in general.
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A comprehensive approach to the quantitative translation of physical weld quality into structural

integrity prediction should rely on accurate characterization of weld material behavior in the presence of

anticipated defect types and sizes. The accurate characterization of each constituent material's effective

continuum behavior removes the issue of size and geometry dependence. This applies equally well to

the material behavior gradients present across the heat affected zone of base metal adjacent to the weld

.a . It would allow the designer or analyst to incorporate anticipated fabrication quality, or the upper

and lower bounds of fabrication quality, into detail design, fabrication design, life cycle prediction and
.4

optimization in a manner consistent with existing and future developments in the design process.

MATERIAL CHARACTERIZATION

Cylindrical uniaxial tensile specimens are traditionally used to characterize elastic and inelastic

behavicr of isotropic materials. The global load-displacement responses of a specimen are normalized to

* engineering stress-engineering strain and true stress-true strain. Therefore.

-P

and

"" 'L - L0j

Lo

where 5 is engineering stress. _ is engineering strain. P is load. L is specimen deformed length.4,) is

specimen cross sectional area in the undeformed length. Also.

.• P

A

and

•L0
-E In

where i is the true stress and f is the true strain.

The true stress-true strain relation is commonly used as the material response curve in conjunc-

tion with a particular constitutive formulation The constitutive formulation translates this one-
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dimensional representation of the material response into arbitrary three-dimensional states of deforma-

tion. Ductile metals, which as a class of materials includes many weld metals, deform to such a degree

that the uniaxial nature of the deformation is lost when the specimen begins to neck. The necking

phenomenon invalidates the interpretation of 6-- as the material's unaxial response. The actual

uniaxial material true stress-true strain curve, valid at the continuum scale, can be obtained through

procedures outlined in Matic (1985) and Matic, Kirby and Jolles (1986). The procedures treat the con-

tinuum true stress-true strain curve, denoted as the r - e curve, as the unknown parameter in an itera-

tive series of computational simulations of the tensile specimen response. After each simulation, the

predicted specimen response is compared to the laboratory specimen response. When satisfactory

-. agreement is reached between predicted and observed specimen response, the solution curve is adopted

_- for the material response.

An understanding of tensile specimen neck development was gained from these studies. They

- suggest that neck development is a consequence of the natural interaction between specimen geometry,

applied load and the material true stress-true strain curve nonlinearity. With this view, necking

- develops without the need of auxiliary conditions to supplement the basic problem statement of

geometry, load and material behavior. Traditionally, auxiliary conditions have been used to overcome

incomplete material chraacterization in the form of inaccurate extrapolations of low strain 6- - data

into higher strain ranges beyond those encountered at the onset of necking. One of these auxiliary con-

ditions has been the introduction of a geometric taper into the specimen geometry. This served to

*1 predispose the neck into developing at the narrowest point of the specimen gage length.

Without the need for artificial geometric imperfections to account for necking, the role of physi-

* cally relevant geometric imperfections on tensile specimen response could be studied. In this Investiga-

.I
tion, computational simulations of HY-IO0 weld metal tensile specimen responses were examined.

-, Defect radius and defect location on the specimen axis were selected as independent variables for a

parametric study of their effect on the specimen response. The defect radii selected for the study were

one order of magnitude smaller than the specimen diameter, in the range of currently available non-

destructive inspection capability Primary interest was on the role of the defect size and location on

I
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specimen deformation asymmetry and the apparent ductility exhibited by the specimen. The concern

regarding specimen asymmetry was motivated by the design of specimens with which to obtain effective

material responses. The apparent ductility of the specimen relates directly to defect criticality and the

translation of fabrication quality to structural integrity prediction.

A standard cylindrical tensile specimen geometry was selected for the computational simulations

(Fig. 1). The gage section measured 5.08 cm (2.00 in.) in length and 1.27 cm (0.50 in.) in diameter.

Including the grip sections, the entire specimen measured 12.70 cm (5.00 in.) in length and 1.65 cm

(0.65 in.) in diameter at the grips. A typical void for purposes of analysis is shown.

CONTINUUM MATERIAL TOUGHNESS CONCEPTS

Tensile specimen failure will be initiated by the first occurrence of continuum fracture in the

specimen. To accurately and consistently account for continuum fracture, the material fracture tough-

ness must be defined accordingly. From fundamental considerations of thermodynamic consistency,

physical relevancy and geometric scale independence, energy is an appropriate quantity which satisfies

these requirements. The discussion in this section focuses on the statement of a strain energy density

continuum fracture criterion and outline its application to tensile specimen failure prediction. For the

purpose of this study, fracture initiation will be considered as specimen failure in view of the fact that

the time between initiation and failure is generally short compared to the prior deformation history.
• 1

A continuum volume of material undergoing deformation is characterized by its multiaxial stress

state ', and multiaxial strain state e,,. For ductile metals, which exhibit inelastic deformation, the

strain state is a function of the stress state and stress history. Then, the state of stress and strain may

be related by a constitutive formulation which defines strain increments de,, from the current stress

state.

.4
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1.27 cm (0.50 it#.) DIAMETER Do

-'

D0  PARAMETERS -

DEFECT LOCATION Zd

L~ e L

2
DEFECT SIZE d0

4do

* 0.64 mnm (0.025 in.)
0.89 mnm (0.035 in.)
1.02 mm (0.040 in.)
1.27 m m (0.050 in.)

* 1.65 mm (0.065 in.)

Fig. I - Cylindrical tensile test specimen containing spherical void defect
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The strain energy per unit mass at a given instant during deformation, will be

iw - lir (__ _±(W
lim 1 -1 W(1)' AV

- 2 -dE, (2)

where p is the mass density. This energy density incorporates both stress and strain into a fundamental

quantity relevant to thermodynamic descriptions of material deformation and damage. The energy den-

•. sity is a scalar quantity which takes into account all components of the stress and strain tensors in a

physically consistent manner. Failure of the material, at the continuum scale, can be associated with

the value of the energy density at which fracture occurs. Thus, the material toughness is defined as

W f " (3)

where w, is the critical strain energy density value. The value of w, for engineering purposes, can be

taken as material constant. This makes wc independent of the particular deformation state and is a uni-

fying feature absent in failure criteria based on stress alone or strain alone.
.

", For ductile metals, the material density varies only slightly, even over large deformations. For

-. this reason, it is common to define an energy per unit volume density

w - a(4)

f" " , de,/ (5)

- with an associated critical value

WC m -- a,I de, (6)

The energy per unit mass is fundamental, but the energy per unit volume is equally appropriate for

constant volume deformation processes.
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For the case of a uniaxial true stress-true strain curve, corresponding to a one-dimensional state

of deformation, the critical energy density corresponds to the area under the uniaxial stress-strain

;" curve, i.e.

W^ O - a -de (7)

This representation is desirable for use with traditional constitutive formulations which rely on uniaxial

stress-strain curves.

% For a multiaxial state of stress, each of the six stress-strain pairs, three normal and three shear,

must be evaluated and summed, i.e.

WC 0 J T 11 di~ll + J a.2 dE22 + J0  (T33 dE33
oo 

.

+ (T 12 dE12 + (s a. 23 dE23 + J0  (T31 dE31

It should be noted that one or more individual terms in the multiaxial expression can be negative.

-A,, ~Their total, we, must be positive, however.

A complete tensile specimen failure prediction should include the location of fracture initiation

and the value of the applied load at which failure occurs. No a priori selection of the fracture initiation

site should be made. Any material point in the specimen, either adjacent to or remote from the void

defect, is a candidate failure site. The continuum toughness of the HY-100 weld metal can be deter-

mined from a defect free tensile test, and the results expressed in terms of the critical energy density

value w,.

A maximum value of the energy density will, in general, exist in the specimen. A relative energy

density ratio may be defined by dividing the energy density w. attained during the loading process, by

547
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the critical energy density, w. When values of this ratio are less than unity fracture initiation does not

occur. i.e.

at each point in the specimen.

As the load is increased, the specimen will continue to deform. When the relative energy density

ratio reaches unity at a point so that

continuum fracture occurs. By normalizing the energy density throughout the structure with the critical

energy density the relative tendency for fracture to occur at different points in the structure can be

quantified.

COMPUTATIONAL SIMULATION

One half of the tensile specimen was modeled to take advantage of the axisymmetry of the prob-

lem. The ABAQUS finite element code was used (Hibbitt et al., 1984b). The model was composed of

732 elements, all type CAX8H (Fig. 2). These are axisymmetric 8-noded quadrilateral elements. Two

degrees of freedom per node reflect radial and axial displacements. A single degree of freedom at each

of nine element integration points is associaLed with an independently interpolated hydrostatic stress.

The use of these hybrid elements prevented physically unrealistic displacement constraints from pro-

pagating through the grid. Such constraints can lead to artificially "stiff' responses of standard elements

* * for incompressible or nearly incompressible deformations.

The HY-100 weld metal uniaxial continuum true stress-true strain curve is given in Fig. 3. This

curve was developed from standard tensile data using the procedures outlined above. The critical

energy density was calculated to be 4.11 x 108 N-m/m 3 (59.600 lb-in./in3 ) This value was used to

determine the fracture initiation site and instant of specimen failure.

.-- %8
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Candidate sites for spherical void defect locations were introduced at 21 locations along the axis of

the model. In a given analysis, 20 of the 21 candidate defect sites were retained as weld material. One

of the 21 sites was transformed into a void by an ABAQUS option which reduces the element stiffness

to zero over a small load increment. This option was invoked at the onset of deformation, effectively

creating one void per specimen. Voids with diameters of 0.64, 0.89, 1.02, 1.27 and 1.65 mm (0.025,

0.035, 0.040, 0.050 and 0.065 in.) were generated in this manner (Fig. 4). The void diameters are

approximately one-tenth of the specimen diameter, comparable to non-destructive inspection capability.

The candidate defect location along the axis were 2.54 mm (0.10 in) apart. Over the entire

parametric series of analyses, voids were created at seven different locations, 2.54 mm to 17.8 mm

(0.10 in. to 0.70 in.) from the horizontal centerline. No defects were necessary below the centerline

since all were reflections of those above the centerline. The finite element mesh included all twenty-

one defect sites to preserve discretization symmetry, thus ruling out discretization asymmetry as a fac-

tor in the results presented below.

Boundary conditions for the model were developed to closely duplicate the actual manner in

which a tensile specimen is physically loaded. For the portion of the model corresponding to the lower

grip, nodes along the outside surface were constrained to zero vertical displacement. For the portion of

the model corresponding to the upper grip, nodes along the outside surface were given uniform vertical

displacement. Thus, the lower grip constrained the specimen and the upper grip drove the specimen

deformation.

For completeness, it should be mentioned that nodes interior to a generated void boundary were

constrained to "drift" with the periphery of the void in an averaged sense. This prevented gross defor-

mations of the zero stiffness elements caused by the combination of zero displacement of the nodes

interior to the void and the continued deformation of the stiff model outside the void, and associated

integration point Jacobian difficulties in the zero stiffness elements.

All analyses were performed with full geometric nonlinearity to account for large strains and rota-

tions. An updated Lagrangian formulation is used for incremental solutions in ABAQUS Rik's algo-

.J
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-~d - -d= 0.64 mm (0.025 in.)

-. d d= 0.89 mm (0.035 in.)

*11 I1~do= 1.02 mm (0.040 in.)

- ,-,do= 1.27 mm (0.050 in.)

W. do= 1.65 mm (0.065 in.)

V Fig. 4 - Finite element model details for spherical void defects of different diameter d,,
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,. rithm, which is load displacement controlled, was used to ensure numerical stability, since the load P

can be expected to decrease for large specimen elongations.

-.- An incremental, rate independent plasticity theory was used for the material constitutive model

- (Hibbitt et al., 1984a). Total strains in the multiaxial strain state eij a d uniaxial strain state E are

linearly decomposed into elastic and plastic components, i.e.,

+
'j 'I - ' I

and

° " E - Ee + E#
.

The yield function f takes the form

:*. f(o',) - o(P

where ao,j and o( are multiaxial stress states, respectively. The associated flow rule governs plastic

strain increments by the relation

-"el aaf-

aa,

In the case of purely elastic behavior , - 0. For active yielding,

W-E o > 0

* Plastic strain increments also satisfy a dissipation equivalence condition

%".." rde-'  - r,/de/P

and a consistency condition

S' do,, - -or dl- 0.

The von Mises yield function

f ( SlS I 1
,'.

P2

* 13



was employed. The deviatoric stress si, is defined as

where they hydrostatic component of stress is a (r,,/3.

DISCUSSION OF RESULTS

As the first series of computational simulations were performed, for the 1.27 cm (0.50 in.) void

defect diameter, noticeable trends in the specimen deformation became apparent. These trends were

confirmed by the other simulations for 0.64, 0.89, 1.02. 1.27 and 1.65 mm (0.025, 0.035, 0.040, 0.050

and 0.065 in.) diameter void defects.

* The deformed specimen shapes are plotted in Fig. 5. The defect location Zd in the specimen was

used to locate the figures in the horizontal direction. The defect size was used to locate the figures in

the vertical direction. The asymmetry of the deformation is evident in many of the specimens, as is the

variation in specimen ductility. These features will be quantirted in discussions below. The neck Inca-

tion and the boundary between comparatively high and low ductility specimens are identified on this

figure to illustrate both of these trends in a comprehensive manner.

Specimen deformation asymmetry, viewed in terms of the neck location, was directly related to

the presence of a void defect. From the previous investigations discussed above on ideal, homogene-

ous specimens with the length-to-diameter ratio of four as considered here, deformation symmetry

exists in the absence of any defects. The presence of the defect, however, tends to reduce the radial

- constraint of the specimen at the defect. This loss of constraint is in addition to the natural lack of'

constraint at the center of the gage length which can be attributed to the geometry of the specimen.

For defect locations near the center of the specimen, these two sources of low constraint coincide in a

constructive manner to draw the neck deformation toward the defect. For defect locations farther from

-. the center of the specimen, the presence of the grip section adjacent to the gage section tends to negate

the influence of the defect. The radial constraint generated by the grip sections tends to offset the lack

04 14
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___ LOW HI1GH
DUCTILITY DUCTILITY

1.66 mmn (0.0615 In.) DIA.
VOID DEFECT

1.27 mmn (0.050 In.) DIA.
VOID DEFECT

1.20 mm (0.040 In.) DIA.
VOID DEFECT

0.66 mm (0.025 in.) DIA.
VOID DEFECT

[CENTER 0.1 0.2 0.3 0.4 0.5 0.6 0.7 inches
OFOAGE
LENGUTH Ief"e

0.5 1.0 1.5 2.0

DEFECT LOCATION

Fig. 5 -Predicted specimen deformation for different spherical void defect locations and diameters
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of constraint produced by the defect. As a result, for these cases, the neck location tends to move back

toward the center of the specimen as the defect is located closer toward the grip section.

The neck location Z, is plotted against the defect location Z, in Fig. 6, with defect size as J

parameter. Both Z, and Z are expressed with reference to the undeformed tensile specimen

geometry. If the defect dominates the neck development completely, this neck localization plot should

lie on a line of slope one and intersect the origin. If the neck is insensitive to the defect, symmetric

specimen deformation results and the line falls on the Z axis.

It is apparent from the simulations that the defects near the center of the specimen, at small Z,

values, tend to strongly influence the neck location. Defect size, however, plays a dominant role over

the rate at which this effect diminishes. For the 1.65 mm (0.065 in.) diameter defect, its location dic-

tates the neck location over fully one half of the specimen length. For the 0.64 mm (0.025 in.) diame-

ter defect, the effect is essentially insignificant as the neck remains at the center of the specimen.

For all the specimens, whether a relatively large or small defect is present, the neck localization

curve drops toward the Z, axis as Z increases. This coincides with the radial constraint adjacent to the

grips and overwhelms the tendency of the defect to reduce constraint. The maximum value of each

curve increases with the defect size. The maximum moves towards the origin as the defect size grows

smaller. The maximum moves towards the diagonal line as the defect size grows larger. The locus of

S-these maximum points form a curve which should be asymptotic to the Z, axis for small Z, values and

asymptotic to the diagonal line for large Z,1 values.

The apparent ductility of the specimen was measured by the percent reduction of area O'n RA) at

failure. From the asymmetric behavior of the specimens, it is apparent that whether the neck volume

O.') of the specimen contains the void defect depends on the size and location of the defect. For the case

when the defect and neck volume do not coincide, the deformation and resulting energy densitv levels

. at the interior of the neck first rise to the critical energy density The local neck deformation develops

essentially as it would in the absence of the defect \s a result, the specimen ductility matches that ol

a defect free specimen. For the cases when the two coincide, the combined effect of the -,oid ,tress.

.'.e'.. -.,' .'. ..', '. .,' • " " " " .' .','-. -," '', " " ". "-' ..'. ',..-".'...,....".,"-...-".....'".-.. -"..".- -.-



- -u Z NOIIV3OI )133N

0s 0

0

V Ii

Lo0

us a
uin

4d Id4d

00

LIO v CV)ci ijiji c c
EEEEE

EEEEE NIJVOI)13



strain and energy concentration and the lateral contraction of the neck volume produces fracture initia-

tion at the periphery of the void much quicker than for neck deformation alone. Initiation occurs when

* the energy density reaches the critical value at this location. As a result, the specimen ductility is signi-

* ficantly reduced for the range of defect sizes and locations which coincide with the neck development.

- The percent reduction of area

/R AO - x10
A0

is plotted against the defect location Zd for each specimen (Fig. 7). For those combinations of defect

size and location where the neck deformation and defect location do not coincide, the full specimen

ductility of approximately 35% RA is attained. Full specimen ductility is essentially independent of

defect size since the specimen failure does not involve the defect.

For those combinations of the defect size and location where the neck deformation and defect

location do coincide, the specimen ductility is markedly reduced. Since the specimen failure involves

the defect, the energy concentration in the vicinity of the defect depends on the size of the defect.

- This is apparent in the precise values predicted for the % RA. For the largest defect considered, with a

- diameter of 1.65 mm (0.065 in.), the ductility was reduced to approximately 70/ RA. This was reflected

in the brittle appearance of the deformed specimen shapes in Fig. 5. As the defect size decreases, the

* ductility increases. For the smallest defect sizes considered, with diameters of 0.64 mm and 0.89 mm

(0.025 in. and 0.035 in.), the RA rises to approximately 18%/.

It is important to note that for each defect size considered, the ductility plot takes on one of only

two values for each defect location. The high value is predicted for defects located near to the grip sec-

- tions, and a low value for the defects located near to the center of the specimen. The transition

between these two distinct values is sharp and abrupt. A considerable effort was undertaken to verify

and characterize this transition. Without exception. the transition occurs over a defect location distance

no greater ihan five percent of the specimen gage length. That is to say that a change in the defect

location of only 2.54 mm (0.10 in.). for the standard tensile specimen geometry considered here, pro-
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duces the step increase or decrease in the specimen ductility. The sharpness of this transition is directlv

related to the location of the neck with respect to the defect.

The load-displacement plots for all specimens were essentially identical, except for the point at

which failure occurred (Fig. 8). The point of failure for those specimens in which the neck and void

defect are not coincident occurred for a specimen gage length deformation of approximately 5.08 mm

(0.20 in.). This is the same as for a defect free specimen. The point of failure moves to smaller values

of specimen gage length deformation as the defect diameter increases. For the largest defect con-

sidered, with diameter 1.65 mm (0.065 in.), the point of failure is at a deformation of approximately

1.27 mm (0.050 in.).

The results of the analyses can be used to assess the severity of each void defect size. The

defects must be considered in the context of the specimen geometry, the actively deforming material in

the neck and the ductility necessary for a minimum apparent toughness of the material. For example, a

practical minimum required apparent toughness might coincide with 10 percent reduction of area. At

this value, fracture initiates for relatively low stress, strain and energy values. Rapid crack growth

could be expected to follow. The maximum apparent toughness, for a defect free neck volume, was

associated with a 35 per cent reduction of area. Ductility within 10 percentage points of this value

would be expected to still provide substantial resistance to fracture initiation and crack growth. The

intermediate apparent toughness range, from 10 to 25 per cent reduction of area, may be classified as

marginal toughness. The particular application and its tolerance to reduced apparent ductility should be

considered so as to make quantitative predictions on the influence of defects to structural integrity

prediction.

For the defects considered in this set of analyses, the two larger sizes, 1.65 mm and 1.27 mm

(0065 in. and 0.050 in.) in diameter, are critical (Fig. 9). The three smaller sizes, 0.63, 0.89 and 1.02

mm (0.025 in., 0 035 in, and 0.040 in.) in diameter, are marginal defects. The upper bound on defect

diameter lies below 0.63 mm 10.025 in.)

20
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DEFECT SIZE CATEGORIZATION FOR
HY-100 WELD METAL

mm DEFECT in
SIZE

2.00-- 0.08

-0.07

* 1.50 0.06 CRITICAL
DEFECT

0.06

1.00 0.04

o.3 MARGINAL
DEFECT

0.50 0.02

'-'. -0.010.01 'INSIGNIFICANT

DEFECT

0.00- 0.00

Fig. 9 - Spherical void defect criticality assessment based on
tensile specimen computational predictions
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SUMMARY

The role of small spherical defect size and location on tensile specimen deformation asymmetry

and ductility were quantitatively examined by computational simulation. The role of a defect in speci-

*. men asymmetry supports earlier findings in which specimen geometry, loading and material behavior

are sufficient to cause necking, but the defect is shown to influence necking.

Specimen fracture occurs at the specimen neck in all cases. In the event the defect and neck

volume coincide, the combined effect of the two stress concentrations is to cause a significant reduction

in the specimen ductility. When defect and neck are not coincident, specimen ductility reverts back to

the defect free full ductility.

The transition between full ductility and reduced ductility is sharp, and depends strongly on defect

location within the specimen. For the defect diameters considered, this abrupt transition is sensitive to

* defect locations separated by a difference of five percent of the specimen gage length.

Quantitative defect classification is discussed in terms of apparent specimen ductilities and practi-

" cal considerations to ensure structural integrity. Actual application of this type of information to a

specific integrity problem depends, of course, on meaningful translation of the specimen behavior to

* effective material behavior in a structure. This aspect of the problem is currently under investigation.
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APPENDIX

ABAQUS Finite Element Program Formulation

A brief summary of the ABAQUS finite element program is included here for reference and com-

pleteness in view of the various possible theoretical formulations available for geometrically and materi-

ally nonlinear analysis. The reader is referred to Hibbitt et al (1984a) for further details.

For a material particle at reference position X, at time t equal to zero, its current position x, at a

later time may be expressed as

x, -x,(X,, ). (A1)

An orthogonal coordinate system of unit base vectors is assumed. The relative position dx, between

two material particles in their current configuration may be expressed in terms of their relative position

in their reference configuration

dx, - dX, (A2)
a X,

- F dX, (A3)

where F, is defined as the deformation gradient.

0 The velocity of the material particle will be

.4- ax,
v, -- • A4)

.O.

- The incremental velocity between two particles will be

dv, - -- dx, (A 5)a X,
aV, ax,

L , F JX, .\

.29
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where L, is the velocity gradient at a material point in the body. The velocity gradient may be decom-

posed into the sum of its symmetric and antisymmetric tensor components as

L, - (L, L,, . IL,, - L (A8)

- +v )+ -v -V. ) .A9)

" D,1 + 0fl (A 10)

where D,, is the rate of deformation tensor, associated with material straining, and a is the material

spin tensor associated with pure rotation at the material point.

For a material body of volume V and surface S in its current configuration, force equilibrium in

integral form is given by

- tdS +"f fdV - 0 (All)

where t, is the surface traction vector per unit of current area and f, is the body force vector per unit of

current volume. The Cauchy stress tensor (r, is related to t, by

t, - o', Ail (A 12)

where n, is the outward unit vector normal to surface S. Using (A12) in (All) along with Gauss

theorem to transform the surface integral to a volume integral,

jV ((., +f,)dV -0 IA 13)

, The integral must, in general, be zero. Therefore,
S

.. , cr,.,,+f, 0. (A 14)

Moment equilibrium in integral form requires

x,t,e,JdS+ f x, f e,,d- ( 0 15)

where e,,, is the permutation symbol. Using Gauss' theorem

f (x, ,e,, +x,or,,e,,k +xo ,e,,k+x,I e,,k)dV 0) 0 Al16
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Therefore.

d - f , VdS + <d DA25)

The Kirchoff stress. i is equal to the Cauchy stress, a7,,, when J is equal to unity For the

material behavior considered in this analysis J deviates from unity by only a small amount. Therefore,

the constitutive formulation in terms of Cauchy stress, as described in the main body of this paper will

"*'" be applicable when expressed in terms of Kirchoff stress.

Equation (A2b) is the virtual velocity equilibrium equation and is the basis for interpolation and

Jiscretization for the finite element formulation. The virtual velocity at a point inside an element will

be interpolated as

[ " jV, ,, (A26)

where the summation is understood to involve only those nodal values -, relevant to a particular ele-

ment The virtual rate of deformation becomes

D,- . V, "  + (NV" ') ,  (A27)

S(V, + ,V,. (A28)
2 " "

Therefore. iA. ) becomes

f' ,Ik*4 )V -dV, - t,.v'k fdV- dV (A29)

,or, since v, appears in each integral,

r I -.- V . )dV)-f .,VJ, S- 'fj.VdV. (A30)

0 . The integrations are taken with respect to the discretized volumes and surfaces consistent with element

and nodal definitions.

Equation fA30) torms the basis for the finite element solution. An incremental solution is gen-

erated bv the Newton algorithm The Jacobian of (A30) is required for the incremental solution, and

e-. 3.
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results in the introduction of a Kirchoff stress rate, ',,, into the incremental equilibrium equation. The

stress rate takes the form

7-. . ,1 7= + k 7 k/,+ 7 k ! k (A 3 1I

where is the total stress rate, r is the material (or Jaumann) stress rate associated with the material

response through the constitutive formulation. The remaining terms involving fQ,, are stress rate con-

7
tributions due to rotation. In practice, all constitutive calculations are performed using r

The total strain measure , s calculated in a manner consistent with the integration of D,. This

generates logarithmic strain measures which are energy conjugate to the Kirchoff stress r, which, as

discussed above, is approximately equal to the Cauchy stress a-, in the analyses under consideration.
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